Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Chem Inf Model ; 62(2): 350-358, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1616922

ABSTRACT

In addition to vaccines, antiviral drugs are essential for suppressing COVID-19. Although several inhibitor candidates were reported for SARS-CoV-2 main protease, most are highly polar peptidomimetics with poor oral bioavailability and cell membrane permeability. Here, we conducted structure-based virtual screening and in vitro assays to obtain hit compounds belonging to a new chemical space, excluding peptidyl secondary amides. In total, 180 compounds were subjected to the primary assay at 20 µM, and nine compounds with inhibition rates of >5% were obtained. The IC50 of six compounds was determined in dose-response experiments, with the values on the order of 10-4 M. Although nitro groups were enriched in the substructure of the hit compounds, they did not significantly contribute to the binding interaction in the predicted docking poses. Physicochemical properties prediction showed good oral absorption. These new scaffolds are promising candidates for future optimization.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors , SARS-CoV-2 , Amides , Antiviral Agents/pharmacology , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
2.
Proteins ; 89(9): 1158-1166, 2021 09.
Article in English | MEDLINE | ID: covidwho-1296890

ABSTRACT

The 2019-novel coronavirus also known as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a common threat to animals and humans, and is responsible for the human SARS pandemic in 2019 to 2021. The infection of SARS-CoV-2 in humans involves a viral surface glycoprotein named as spike proteins, which bind to the human angiotensin-converting enzyme 2 (ACE2) proteins. Particularly, the receptor binding domains (RBDs) mediate the interaction and contain several disordered regions, which help in the binding. Investigations on the influence of disordered residues/regions in stability and binding of spike protein with ACE2 help to understand the disease pathogenesis, which has not yet been studied. In this study, we have used molecular-dynamics simulations to characterize the structural changes in disordered regions of the spike protein that result from ACE2 binding. We observed that the disordered regions undergo disorder-to-order transition (DOT) upon binding with ACE2, and the DOT residues are located at functionally important regions of RBD. Although the RBD is having rigid structure, DOT residues make conformational rearrangements for the spike protein to attach with ACE2. The binding is strengthened via hydrophilic and aromatic amino acids mainly present in the DOTs. The positively correlated motions of the DOT residues with its nearby residues also explain the binding profile of RBD with ACE2, and the residues are observed to be contributing more favorable binding energies for the spike-ACE2 complex formation. This study emphasizes that intrinsically disordered residues in the RBD of spike protein may provide insights into its etiology and be useful for drug and vaccine discovery.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , COVID-19/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Pliability , Protein Binding , Static Electricity
3.
Sci Rep ; 10(1): 12493, 2020 07 27.
Article in English | MEDLINE | ID: covidwho-689152

ABSTRACT

The number of cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) has reached over 114,000. SARS-CoV-2 caused a pandemic in Wuhan, China, in December 2019 and is rapidly spreading globally. It has been reported that peptide-like anti-HIV-1 drugs are effective against SARS-CoV Main protease (Mpro). Due to the close phylogenetic relationship between SARS-CoV and SARS-CoV-2, their main proteases share many structural and functional features. Thus, these drugs are also regarded as potential drug candidates targeting SARS-CoV-2 Mpro. However, the mechanism of action of SARS-CoV-2 Mpro at the atomic-level is unknown. In the present study, we revealed key interactions between SARS-CoV-2 Mpro and three drug candidates by performing pharmacophore modeling and 1 µs molecular dynamics (MD) simulations. His41, Gly143, and Glu166 formed interactions with the functional groups that were common among peptide-like inhibitors in all MD simulations. These interactions are important targets for potential drugs against SARS-CoV-2 Mpro.


Subject(s)
Betacoronavirus/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Betacoronavirus/chemistry , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Design , Humans , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Sequence Alignment , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL